3.15.77 \(\int \frac {(c+d x)^{3/2}}{(a+b x)^{7/2}} \, dx\) [1477]

Optimal. Leaf size=32 \[ -\frac {2 (c+d x)^{5/2}}{5 (b c-a d) (a+b x)^{5/2}} \]

[Out]

-2/5*(d*x+c)^(5/2)/(-a*d+b*c)/(b*x+a)^(5/2)

________________________________________________________________________________________

Rubi [A]
time = 0.00, antiderivative size = 32, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {37} \begin {gather*} -\frac {2 (c+d x)^{5/2}}{5 (a+b x)^{5/2} (b c-a d)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^(3/2)/(a + b*x)^(7/2),x]

[Out]

(-2*(c + d*x)^(5/2))/(5*(b*c - a*d)*(a + b*x)^(5/2))

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n +
1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rubi steps

\begin {align*} \int \frac {(c+d x)^{3/2}}{(a+b x)^{7/2}} \, dx &=-\frac {2 (c+d x)^{5/2}}{5 (b c-a d) (a+b x)^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 32, normalized size = 1.00 \begin {gather*} -\frac {2 (c+d x)^{5/2}}{5 (b c-a d) (a+b x)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^(3/2)/(a + b*x)^(7/2),x]

[Out]

(-2*(c + d*x)^(5/2))/(5*(b*c - a*d)*(a + b*x)^(5/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(160\) vs. \(2(26)=52\).
time = 0.18, size = 161, normalized size = 5.03

method result size
gosper \(\frac {2 \left (d x +c \right )^{\frac {5}{2}}}{5 \left (b x +a \right )^{\frac {5}{2}} \left (a d -b c \right )}\) \(27\)
default \(-\frac {\left (d x +c \right )^{\frac {3}{2}}}{b \left (b x +a \right )^{\frac {5}{2}}}+\frac {3 \left (a d -b c \right ) \left (-\frac {\sqrt {d x +c}}{2 b \left (b x +a \right )^{\frac {5}{2}}}+\frac {\left (a d -b c \right ) \left (-\frac {2 \sqrt {d x +c}}{5 \left (-a d +b c \right ) \left (b x +a \right )^{\frac {5}{2}}}-\frac {4 d \left (-\frac {2 \sqrt {d x +c}}{3 \left (-a d +b c \right ) \left (b x +a \right )^{\frac {3}{2}}}+\frac {4 d \sqrt {d x +c}}{3 \left (-a d +b c \right )^{2} \sqrt {b x +a}}\right )}{5 \left (-a d +b c \right )}\right )}{4 b}\right )}{2 b}\) \(161\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(3/2)/(b*x+a)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-1/b*(d*x+c)^(3/2)/(b*x+a)^(5/2)+3/2*(a*d-b*c)/b*(-1/2/b*(d*x+c)^(1/2)/(b*x+a)^(5/2)+1/4*(a*d-b*c)/b*(-2/5*(d*
x+c)^(1/2)/(-a*d+b*c)/(b*x+a)^(5/2)-4/5*d/(-a*d+b*c)*(-2/3*(d*x+c)^(1/2)/(-a*d+b*c)/(b*x+a)^(3/2)+4/3*d*(d*x+c
)^(1/2)/(-a*d+b*c)^2/(b*x+a)^(1/2))))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/(b*x+a)^(7/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more detail

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 104 vs. \(2 (26) = 52\).
time = 2.15, size = 104, normalized size = 3.25 \begin {gather*} -\frac {2 \, {\left (d^{2} x^{2} + 2 \, c d x + c^{2}\right )} \sqrt {b x + a} \sqrt {d x + c}}{5 \, {\left (a^{3} b c - a^{4} d + {\left (b^{4} c - a b^{3} d\right )} x^{3} + 3 \, {\left (a b^{3} c - a^{2} b^{2} d\right )} x^{2} + 3 \, {\left (a^{2} b^{2} c - a^{3} b d\right )} x\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/(b*x+a)^(7/2),x, algorithm="fricas")

[Out]

-2/5*(d^2*x^2 + 2*c*d*x + c^2)*sqrt(b*x + a)*sqrt(d*x + c)/(a^3*b*c - a^4*d + (b^4*c - a*b^3*d)*x^3 + 3*(a*b^3
*c - a^2*b^2*d)*x^2 + 3*(a^2*b^2*c - a^3*b*d)*x)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(3/2)/(b*x+a)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 374 vs. \(2 (26) = 52\).
time = 1.07, size = 374, normalized size = 11.69 \begin {gather*} -\frac {4 \, {\left (\sqrt {b d} b^{8} c^{4} d^{2} {\left | b \right |} - 4 \, \sqrt {b d} a b^{7} c^{3} d^{3} {\left | b \right |} + 6 \, \sqrt {b d} a^{2} b^{6} c^{2} d^{4} {\left | b \right |} - 4 \, \sqrt {b d} a^{3} b^{5} c d^{5} {\left | b \right |} + \sqrt {b d} a^{4} b^{4} d^{6} {\left | b \right |} + 10 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{4} b^{4} c^{2} d^{2} {\left | b \right |} - 20 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{4} a b^{3} c d^{3} {\left | b \right |} + 10 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{4} a^{2} b^{2} d^{4} {\left | b \right |} + 5 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{8} d^{2} {\left | b \right |}\right )}}{5 \, {\left (b^{2} c - a b d - {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2}\right )}^{5} b^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/(b*x+a)^(7/2),x, algorithm="giac")

[Out]

-4/5*(sqrt(b*d)*b^8*c^4*d^2*abs(b) - 4*sqrt(b*d)*a*b^7*c^3*d^3*abs(b) + 6*sqrt(b*d)*a^2*b^6*c^2*d^4*abs(b) - 4
*sqrt(b*d)*a^3*b^5*c*d^5*abs(b) + sqrt(b*d)*a^4*b^4*d^6*abs(b) + 10*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(
b^2*c + (b*x + a)*b*d - a*b*d))^4*b^4*c^2*d^2*abs(b) - 20*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b
*x + a)*b*d - a*b*d))^4*a*b^3*c*d^3*abs(b) + 10*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*
d - a*b*d))^4*a^2*b^2*d^4*abs(b) + 5*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))
^8*d^2*abs(b))/((b^2*c - a*b*d - (sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2)^5*b^3)

________________________________________________________________________________________

Mupad [B]
time = 0.80, size = 27, normalized size = 0.84 \begin {gather*} \frac {2\,{\left (c+d\,x\right )}^{5/2}}{\left (5\,a\,d-5\,b\,c\right )\,{\left (a+b\,x\right )}^{5/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x)^(3/2)/(a + b*x)^(7/2),x)

[Out]

(2*(c + d*x)^(5/2))/((5*a*d - 5*b*c)*(a + b*x)^(5/2))

________________________________________________________________________________________